Question:
Which of the following matrices are equal?
Difficulty: Easy
Solution:
Solving C
C = $\left[ 5-2 \right]$
C = $\left[ 3 \right]$
Solving G
G = $\left[ \begin{matrix} 3-1 \\ 3+3 \\ \end{matrix} \right]$
G = $\left[ \begin{matrix} 2 \\ 6 \\ \end{matrix} \right]$
Solving I
I = $\left[ \begin{matrix} 3 & 3+2 \\ \end{matrix} \right]$
I = $\left[ \begin{matrix} 3 & 5 \\ \end{matrix} \right]$
Solving J
J = $\left[ \begin{matrix} 2+2 & 2-2 \\ 2+4 & 2+0 \\ \end{matrix} \right]$
J = $\left[ \begin{matrix} 4 & 0 \\ 6 & 2 \\ \end{matrix} \right]$
Now Matrices are said to be equal if
(i) They are of same order
(ii) Their corresponding values are equal
So, according to this definition
(a) Matrices A and C are equal, A = C.
(b) Matrices B and I are equal, B = I.
(c) Matrices E, H and J are equal, E = H = J.
(d) Matrices F and G are equal, F = G.
Sponsored Ads