Question:
Verify that if $\rm{A} = \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \\ \end{matrix} \right]$, $\rm{B} = \left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right]$ then
(i) $(\rm{A}^{t})^{t} = \rm{A}$
(i) $(\rm{B}^{t})^{t} = \rm{B}$
Difficulty: Easy
Solution:
(i) To prove: $(\rm{A}^{t})^{t} = \rm{A}$
Given
$\rm{A} = \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \\ \end{matrix} \right]$
$\rm{A}^{t} = \left[ \begin{matrix} 1 & 0 \\ 2 & 1 \\ \end{matrix} \right]$
Taking transpose of $\rm{A}^{t}$, we will get
$(\rm{A}^{t})^{t} = \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \\ \end{matrix} \right]= \rm{A}$
Hence proved: $(\rm{A}^{t})^{t} = \rm{A}$
(ii) To prove: $(\rm{B}^{t})^{t} = \rm{B}$
Given
$\rm{B} = \left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right]$
$\rm{B}^{t} = \left[ \begin{matrix} 1 & 2 \\ 1 & 0 \\ \end{matrix} \right]$
Taking transpose of $\rm{B}^{t}$, we will get
$(\rm{B}^{t})^{t} = \left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right] = \rm{B}$
Hence proved: $(\rm{B}^{t})^{t} = \rm{B}$
Sponsored Ads