Question:
Perform the indicated operations and simplify the following.
Difficulty: Easy
Solution:
(i) $\left( \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]+~\left[ \begin{matrix} 0 & 2 \\ 3 & 0 \\ \end{matrix} \right] \right)+~\left[ \begin{matrix} 1 & 1 \\ 1 & 0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1+0 & 0+2 \\ 0+3 & 1+0 \\ \end{matrix} \right]+~\left[ \begin{matrix} 1 & 1 \\ 1 & 0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \\ \end{matrix} \right]+~\left[ \begin{matrix} 1 & 1 \\ 1 & 0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1+1 & 2+1 \\ 3+1 & 1+0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 2 & 3 \\ 4 & 1 \\ \end{matrix} \right]$
(ii) $\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]+~\left( \left[ \begin{matrix} 0 & 2 \\ 3 & 0 \\ \end{matrix} \right]-~\left[ \begin{matrix} 1 & 1 \\ 1 & 0 \\ \end{matrix} \right] \right)$
= $\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]+~\left[ \begin{matrix} 0-1 & 2-1 \\ 3-1 & 0-0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]+~\left[ \begin{matrix} -1 & 1 \\ 2 & 0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1+(-1) & 0+1 \\ 0+2 & 1+0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 0 & 1 \\ 2 & 1 \\ \end{matrix} \right]$
(iii) $\left[ \begin{matrix} 2 & 3 & 1 \\ \end{matrix} \right]+\left( \left[ \begin{matrix} 1 & 0 & 2 \\ \end{matrix} \right]-~\left[ \begin{matrix} 2 & 2 & 2 \\ \end{matrix} \right] \right)$
= $\left[ \begin{matrix} 2 & 3 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} 1-2 & 0-2 & 2-2 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 2 & 3 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & -2 & 0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 2+(-1) & 3+(-2) & 1+0 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1 & 1 & 1 \\ \end{matrix} \right]$
(iv) $\left[ \begin{matrix} 1 & 2 & 3 \\ -1 & -1 & -1 \\ 0 & 1 & 2 \\ \end{matrix} \right]$ $+\left[ \begin{matrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1+1 & 2+1 & 3+1 \\ -1+2 & -1+2 & -1+2 \\ 0+3 & 1+3 & 2+3 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 3 & 4 & 5 \\ \end{matrix} \right]$
(v) $\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 0 & -2 \\ -2 & -1 & 0 \\ 0 & 2 & -1 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1+1 & 2+0 & 3+\left( -2 \right) \\ 2+\left( -2 \right) & 3+\left( -1 \right) & 1+0 \\ 3+0 & 1+2 & 2+\left( -1 \right) \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 2 & 2 & 1 \\ 0 & 2 & 1 \\ 3 & 3 & 1 \\ \end{matrix} \right]$
(vi) $\left( \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \\ \end{matrix} \right]+~\left[ \begin{matrix} 2 & 1 \\ 1 & 0 \\ \end{matrix} \right] \right)+~\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 1+2 & 2+1 \\ 0+1 & 1+0 \\ \end{matrix} \right]+~\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 3 & 3 \\ 1 & 1 \\ \end{matrix} \right]+~\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 3+1 & 3+1 \\ 1+1 & 1+1 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 4 & 4 \\ 2 & 2 \\ \end{matrix} \right]$
Sponsored Ads