Question:
If A = $\left[ \begin{matrix} 3 & 0 \\ -1 & 2 \\ \end{matrix} \right]$, B = $\left[ \begin{matrix} 6 \\ 5 \\ \end{matrix} \right]$, find
Difficulty: Easy
Solution:
(i) AB
= $\left[ \begin{matrix} 3 & 0 \\ -1 & 2 \\ \end{matrix} \right]\times \left[ \begin{matrix} 6 \\ 5 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 3\times 6+0\times 5 \\ \left( -1 \right)\times 6+2\times 5 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 18+0 \\ -6+10 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} 18 \\ 4 \\ \end{matrix} \right]$
So, AB = $\left[ \begin{matrix} 18 \\ 4 \\ \end{matrix} \right]$
(ii) BA
BA is not possible as it is not conformable for multiplication (number of columns of B is not equal to number of rows of A).
Sponsored Ads