Question:
Find the values of a, b, c, and d which satisfy the matrix equation.
$\left[ \begin{matrix} a+c & a+2b \\ c-1 & 4d-6 \\ \end{matrix} \right] = \left[ \begin{matrix} 0 & -7 \\ 3 & 2d \\ \end{matrix} \right]$
Difficulty: Easy
Solution:
As, $\left[ \begin{matrix} a+c & a+2b \\ c-1 & 4d-6 \\ \end{matrix} \right]$ = $\left[ \begin{matrix} 0 & -7 \\ 3 & 2d \\ \end{matrix} \right]$
By comparing the corresponding elements, we get
$a + c = 0$
$a = -c$ ---------------(i)
$a + 2b = -7$
$2b = - (a+7)$ ---------------(ii)
$c - 1 = 3$
$c = 3 + 1$
$c = 4$ ---------------(iii)
By putting the value of “c” in equation (i), we will get
$a = -4$ ---------------(iv)
By putting the value of “a” in equation (ii), we will get
$2b = - (-4+7)$
$2b = - (3)$
$b = -{\large \frac{3}{2}} $
$b = - 1.5$ ---------------(v)
Similarly,
$4d - 6 = 2d$
$4d - 2d = 6$
$2d = 6$
$d =-{\large \frac{6}{2}}$
$d = 3$ ---------------(vi)
From equations (iii), (iv), (v) and (vi) we get
$a = - 4$, $b = - 1.5$, $c = 4$ and $d = 3$
Sponsored Ads