Question:
Find the additive inverse of following matrices.
Difficulty: Easy
Solution:
The additive inverse of a matrix is obtained by changing the sign of each entry. So, according to the definition:
(i) Additive inverse of A = $-$A = $\left[ \begin{matrix} -2 & -4 \\ 2 & -1 \\ \end{matrix} \right]$
(ii) Additive inverse of B = $-$B = $\left[ \begin{matrix} -1 & 0 & 1 \\ -2 & 1 & -3 \\ -3 & 2 & -1 \\ \end{matrix} \right]$
(iii) Additive inverse of C = $-$C = $\left[ \begin{matrix} -4 \\ 2 \\ \end{matrix} \right]$
(iv) Additive inverse of D = $-$D = $\left[ \begin{matrix} -1 & 0 \\ 3 & 2 \\ -2 & -1 \\ \end{matrix} \right]$
(v) Additive inverse of E = $-$E = $\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right]$
(vi) Additive inverse of F = $-$F = $\left[ \begin{matrix} -\sqrt{3} & -1 \\ 1 & -\sqrt{2} \\ \end{matrix} \right]$
Sponsored Ads