Mashaal Masha

Question:

 

Find negative of matrices A, B, C, D and E when:

 

A =$~~\left[ \begin{matrix} 1 \\ 0 \\ -1 \\ \end{matrix} \right]$

B =$~\left[ \begin{matrix} 3 & -1 \\ 2 & 1 \\ \end{matrix} \right]$

C =$~\left[ \begin{matrix} 2 & 6 \\ 3 & 2 \\ \end{matrix} \right]$

D = $\left[ \begin{matrix} -3 & 2 \\ -4 & 5 \\ \end{matrix} \right]$
E = $\left[ \begin{matrix} 1 & -5 \\ 2 & 3 \\ \end{matrix} \right]$  

 

Difficulty: Easy

Solution:

Negative of a matrix is obtained by inverting (changing) the signs of all its entries.

 

(i) $-~$A =$~~\left[ \begin{matrix} -1 \\ 0 \\ 1 \\ \end{matrix} \right]$

(ii) $-$B =$~\left[ \begin{matrix} -3 & 1 \\ -2 & -1 \\ \end{matrix} \right]$

(iii) $-~$C =$~\left[ \begin{matrix} -2 & -6 \\ -3 & -2 \\ \end{matrix} \right]$

(iv) $-$D = $\left[ \begin{matrix} 3 & -2 \\ 4 & -5 \\ \end{matrix} \right]$

(v) $-$E = $\left[ \begin{matrix} -1 & 5 \\ -2 & -3 \\ \end{matrix} \right]$

Sponsored Ads