Mashaal Masha
Choose the correct options for the following questions.
Determinant of $\begin{bmatrix}x& 1& 1 &1 \\1&x & 1 & 1\\1&1&x & 1\\1&1&1&x \end{bmatrix}$=
Difficulty: Easy
A:
0
B:
(x-1)
C:
x+3
D:
(x+3)(x-1)
Find the cofactor of 1 in the matrix $A = \begin{bmatrix}1 & 3 \\2 & 4 \end{bmatrix}$
Difficulty: Easy
A:
$1$
B:
$-1$
C:
$4$
D:
$-4$
Sponsored AdsHide Ads
If determinant of $A=\begin{bmatrix}4& 0 &0 \\0&-2& 0 \\0&0&3 \end{bmatrix}$ then $A_{11}$=
Difficulty: Easy
A:
6
B:
8
C:
5
D:
-6
Orders of some matrices are given below. Which one of them cannot be multiplied?
Difficulty: Easy
A:
a x b, b x c where a, b and c are all positive integers
B:
3 x 5, 4 x 1
C:
m x n, n x p where m, n and p are all positive integers
D:
1 x 2, 2 x 4
Null matrix of order $1\times2$ is
Difficulty: Easy
A:
$\begin{bmatrix}0 \\0 \end{bmatrix}$
B:
$\begin{bmatrix}0 & 0 \end{bmatrix}$
C:
$\begin{bmatrix}0 & 0 \\ 0 & 0 \end{bmatrix}$
D:
None of these
Sponsored AdsHide Ads
The value of determinant of $\begin{bmatrix}1& a &b+c \\1&b& c+a \\1&c&a+b \end{bmatrix}$ is
Difficulty: Easy
A:
0
B:
(a+b+c)
C:
(1-a)(1-b)(1-c)
D:
$(a+b+c)^{2}$
Inverse of $A=\begin{bmatrix}1 & 2 \\3 & 4 \end{bmatrix}$ is:
Difficulty: Easy
A:
$\begin{bmatrix}1 & -2 \\3 & 0 \end{bmatrix}$
B:
$\begin{bmatrix}-2 & 1 \\1.5 & -0.5 \end{bmatrix}$
C:
$\begin{bmatrix}0 & 0 \\0 & 0 \end{bmatrix}$
D:
None of the these
Inverse of $A=\begin{bmatrix}a & b \\c & d \end{bmatrix}$ is:
Difficulty: Easy
A:
$\frac{1}{adbc}\begin{bmatrix}a & b \\c & d \end{bmatrix}$
B:
$\begin{bmatrix}-ad & bc \\c & d \end{bmatrix}$
C:
$\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}$
D:
None of these
Sponsored AdsHide Ads
Determinant of $\begin{bmatrix}4 & 5 & 4 \\2 & 1 & 2 \\ 3 & 7 & 3 \end{bmatrix}$ is:
Difficulty: Easy
Verified By ClassNotes
A:

12

B:

$-42$

C:

21

D:

None of these

Find the values of $x$ if $\begin{vmatrix}3 & 1 & x \\-1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix}=-30$
Difficulty: Easy
A:
$-2,3$
B:
$3,-4$
C:
$2,-3$
D:
$4,-3$

Top Your Class

Subscribe to the premium package and ace your exams using premium features

Go Premium Now
Go Premium

Go Premium with just USD 24.99/month!